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Pd-mediated synthesis of 2-arylquinolines and tetrahydropyridines
from modified Baylis–Hillman adducts
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Abstract

We synthesized 2-arylquinolines and tetrahydropyridines via palladium-mediated Heck type reactions starting from the Baylis–
Hillman adducts. 2-Arylquinolines were prepared via the Heck type cyclization followed by concomitant aerobic oxidation.
� 2008 Elsevier Ltd. All rights reserved.
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Although palladium-mediated cyclizations have been
investigated extensively using various substrates, examples
on the synthesis of heterocyclic compounds starting from
Baylis–Hillman adducts were somewhat limited.1 Trost
and co-workers used Pd-mediated synthesis of dihydro-
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benzofuran from Baylis–Hillman adducts.1e,f Very recently
Lamaty and co-workers reported the synthesis of nitrogen-
containing seven-membered ring compounds and oxygen-
containing five-membered ring compounds (Scheme 1).1a–c
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synthesis of seven-membered cyclic compounds containing
sulfonamide linkage (Scheme 1).1d

However, Heck type cyclizations using Baylis–Hillman
adducts as starting materials for the synthesis of quinolines
has not been reported to the best of our knowledge
(Scheme 1).1–3 Syntheses of suitably substituted quinolines
have received much attention due to their biological activ-
ity and the usefulness of them in organic synthesis for fur-
ther transformations.2–4 In these contexts, we decided to
examine the feasibility for the synthesis of quinolines start-
ing from Baylis–Hillman adducts. Scheme 1 showed our
synthetic rationale, which involved Pd-mediated Heck
reaction (6-endo) and concomitant aerobic oxidation.5

Thus we synthesized starting material 2a from Baylis–
Hillman acetate 1a and 2-bromoaniline by using the well-
known DABCO salt concept (sequential SN20–SN20

displacement reaction as in Scheme 2) in the Baylis–Hill-
man chemistry.2c,d,h However, the introduction of 2-bro-
moaniline at the secondary position required very long
reaction time (7–14 days at room temperature).2c,d When
Table 1
Pd-mediated cyclizations of modified Baylis–Hillman adducts
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Conditions

R1

2a-g 4a-g

Entry Substratea (%)

1 2a (56)
2 2b (71)
3 2c (68)
4 2d (59)
5 2e (40)
6 2f (43)
7 2g (61)

a Conditions: (i) Baylis–Hillman acetates 1 (1.0 equiv), aq THF, DABCO (1.1
2a–c and 14 days 2d–g).

b Conditions: substrate (1.0 equiv), Pd(OAc)2 (0.1 equiv), K2CO3 (2.0 equiv)
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we elevated the reaction temperature the reaction showed
the formation of many side products to make the separa-
tion of desired product tedious and make the yield eventu-
ally low. Actually the best yield of compound 2a (56%) was
obtained at room temperature after 7 days. With this com-
pound 2a in our hand, we examined a few reaction condi-
tions and we found that the conditions of Lamaty
(Pd(OAc)2/K2CO3/PEG-3400/DMF/80–90 �C)1a–c showed
the best results.6 We obtained desired 2-phenylquinoline-
3-carboxylic acid derivative 4a directly in moderate yield
(58%),4d–f,7 presumably via the Pd-mediated aerobic oxida-
tion5 of the intermediate dihydroquinoline 3a (Scheme 2).
Encouraged by the results, we prepared 2b–g (40–71%)
from the reactions between the corresponding Baylis–
Hillman acetates and 2-bromoanilines. After that, we
examined the generality of the novel one-pot reaction of
sequential Heck type cyclization and the following aerobic
oxidation. The results are summarized in Table 1. Desired
quinolines 4b–g were obtained in 53–69% yields in short
time in a one-pot reaction.
R1 a: Ar = Ph, R1 = H, R2 = Me
b: Ar = Ph, R1 = H, R2 = Et
c: Ar = 4-ClC6H4-, R1 = H, R2 = Me
d: Ar = 2-naphthyl, R1 = H, R2 = Me
e: Ar = Ph, R1 = Me, R2 = Me
f: Ar = 3-MeC6H4-, R1 = Me, R2 = Me
g: Ar = 4-PhC6H4-, R1 = Me, R2 = Me

Conditionsb Product (%)

80–90 �C, 2 h 4a (58)
80–90 �C, 1.5 h 4b (66)
80–90 �C, 1.5 h 4c (69)
90–100 �C, 1.5 h 4d (53)
80–90 �C, 1 h 4e (60)
80–90 �C, 1 h 4f (64)
90–100 �C, 2 h 4g (63)

equiv), rt, 15 min; (ii) 2-bromoanilines (1.0 equiv), rt, 7–14 days (7 days for
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As a next step, to synthesize 2,3,5-trisubstituted pyridine
derivative such as 7a (vide infra) by using the same proto-
col of quinolines (Scheme 2 and Table 1), we tried the syn-
thesis of 2-bromoprophenylamine (–NHCH@C(Br)CH3 or
–NHCH2C(Br)@CH2) moiety-substituted Baylis–Hillman
adducts at the secondary position. However, the synthesis
was very difficult, thus we changed our strategy as shown
in Scheme 3 involving the use of N-tosyl analog 5a as the
starting material instead of N–H analog. We imagined that
elimination of p-toluenesulfinic acid and concomitant dou-
ble bond isomerization process after the Heck cyclization
of 5a could provide desired 2,3,5-trisubstituted pyridine
7a (Scheme 4, vide infra). Thus we prepared starting mate-
Ph

N

COOMe

7a (22%)

Cs2CO3 (3.0 equiv)

DMF, 110 oC, 3 h
6a + intractable 

mixtures

Scheme 4.

Table 2
Pd-mediated cyclizations of modified Baylis–Hillman adducts
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1
Ph

N
Ts

COOMe

Br
5a (92)

P
K
P
8

2

N
Ts

COOMe

Br

H3C

5b (84)

P
K
P
9

3
Ph

N
Ts

COOEt

Br
5c (88)

P
K
P
9

4

N
Ts

COOMe

Br
5d (97)

P
P
E
1

a Conditions: (i) N-tosyl aza-Baylis–Hillman adducts (1.0 equiv),2h 2,3-dibro
(1.2 equiv), DMF, rt, 6 h, and the yields refer to the last alkylation step.

b Compound 6d was obtained in 34% yield under the conditions: Pd(OAc)2
rials 5a–d as in Scheme 3 and Table 2 by following the pro-
cess: (i) introduction of tosylamide via the DABCO salt of
the corresponding Baylis–Hillman acetates,2c,d,h (ii) alkyl-
ation with 2,3-dibromopropene (for 5a–c) or with allyl
bromide (for 5d). Heck type cyclization of 5a produced
exo-methylene tetrahydropyridine 6a in moderate yield
(62%) under the conditions of Pd(OAc)2/K2CO3/PEG-
3400/DMF/80–90 �C (entry 1 in Table 2). However, it
was very difficult to convert 6a into the corresponding
2,3,5-trisubstituted pyridine 7a. We obtained only low yield
(22%) of 7a under the influence of 3.0 equiv of Cs2CO3 in
DMF at elevated temperature (Scheme 4). We synthesized
6b–d under similar conditions in view of the importance of
tetrahydropyridines8 and the synthetic applicability of
these exo-methylene tetrahydropyridines.8 The yield of
compound 6d was relatively low (34%) under the same con-
ditions, however, the yield was improved slightly (up to
46%) by using the conditions of Vasudevan (Pd(OAc)2/
P(o-Tol)3/Et3N/100–110 �C, entry 4).1d The whole results
are summarized in Table 2 and further synthetic applica-
tions of these compounds are currently underway.
onditions Product (%)
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6a (62)2CO3 (2.0 equiv)
EG-3400, DMF
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d(OAc)2 (0.1 equiv) N
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H3C

6b (60)2CO3 (2.0 equiv)
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0–100 �C, 2.5 h
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Ph

N

COOEt

Ts

6c (58)2CO3 (2.0 equiv)
EG-3400, DMF
0–100 �C, 2 h

d(OAc)2 (0.2 equiv) N
Ts

MeOOC 6d (46)b(o-Tol)3 (2.0 equiv)
t3N (solvent)
00–110 �C, 4 h

mopropene (for 5a–c, 1.2 equiv)/allyl bromide (for 5d, 1.2 equiv), K2CO3

(0.1 equiv), K2CO3 (2.0 equiv), PEG-3400, DMF, 110–120 �C, 4 h.
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In summary, we prepared some 2-arylquinoline deriva-
tives via the palladium-mediated sequential cyclization and
concomitant aerobic oxidation process in a one-pot reaction
from modified Baylis–Hillman adducts. In addition, we pre-
pared some exo-methylene tetrahydropyridine derivatives.
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